Part Number Hot Search : 
74AC125 R5F7124 CET453N GBPC35 BD9204F 114EK ECH810 DMA22XX
Product Description
Full Text Search
 

To Download VND830LSP13TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
VND830LSP
DOUBLE CHANNEL HIGH SIDE DRIVER
TYPE VND830LSP
(*) Per each channel
RDS(on) 60 m (*)
IOUT 18 A (*)
VCC 36 V
CMOS COMPATIBLE INPUTS OPEN DRAIN STATUS OUTPUTS s ON STATE OPEN LOAD DETECTION s OFF STATE OPEN LOAD DETECTION s SHORTED LOAD PROTECTION s UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN s LOSS OF GROUND PROTECTION s VERY LOW STAND-BY CURRENT
s s s
10
1
PowerSO-10TM
REVERSE BATTERY PROTECTION (**) compatibility table). Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects open load condition both in on and off state. The openload threshold is aimed at detecting the 5W/12V standard bulb as an openload fault in the on state. Device automatically turns off in case of ground pin disconnection.
DESCRIPTION The VND830LSP is a monolithic device made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient BLOCK DIAGRAM
VCC
VCC CLAMP
OVERVOLTAGE UNDERVOLTAGE
GND INPUT1 STATUS1
CLAMP 1 OUTPUT1 DRIVER 1 CLAMP 2 CURRENT LIMITER 1 OVERTEMP. 1 LOGIC OPENLOAD ON 1 CURRENT LIMITER 2 DRIVER 2 OUTPUT2
INPUT2 OPENLOAD OFF 1 STATUS2 OPENLOAD OFF 2 OVERTEMP. 2 OPENLOAD ON 2
(**) See application schematic at page 8
March 2003
1/18
VND830LSP
ABSOLUTE MAXIMUM RATING
Symbol VCC - VCC - IGND IOUT - IOUT IIN ISTAT Parameter DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current DC Status Current Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) - INPUT VESD - STATUS - OUTPUT Ptot EMAX Tj Tc Tstg - VCC Power Dissipation TC=25C Maximum Switching Energy (L=0.14mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=14A) Junction Operating Temperature Case Operating Temperature Storage Temperature Value 41 - 0.3 - 200 Internally Limited -6 +/- 10 +/- 10 4000 4000 5000 5000 74 52 Internally Limited - 40 to 150 - 55 to 150 Unit V V mA A A mA mA V V V V W mJ C C C
CONNECTION DIAGRAM (TOP VIEW)
GROUND INPUT 1 STATUS 1 STATUS 2 INPUT 2
6 7 8 9 10 11 V CC
5 4 3 2 1
OUTPUT OUTPUT N.C. OUTPUT OUTPUT
1 1 2 2
CURRENT AND VOLTAGE CONVENTIONS
IS I IN1 INPUT 1 VIN1 VSTAT1 ISTAT1 STATUS 1 IIN2 INPUT 2 VIN2 ISTAT2 STATUS 2 VSTAT2 GND OUTPUT 2 VOUT2 IGND OUTPUT 1 IOUT2 VOUT1 IOUT1 VCC
VCC
2/18
1
VND830LSP
THERMAL DATA
Symbol Rthj-case Rthj-amb Parameter Thermal Resistance Junction-case Thermal Resistance Junction-ambient Value 2 52 (*) Unit C/W C/W
(*) When mounted on a standard single-sided FR-4 board with 50mm2 of Cu (at least 35m thick). Horizontal mounting and no artificial air flow.
ELECTRICAL CHARACTERISTICS (8VSymbol VCC (**) VUSD (**) VOV (**) RON Parameter Operating Supply Voltage Undervoltage Shut-down Overvoltage Shut-down On State Resistance Test Conditions Min 5.5 3 36 Typ 13 4 Max 36 5.5 60 12 12 5 0 -75 120 40 25 7 50 0 5 3 Unit V V V m m A A mA A A A A
IOUT =2A; Tj=25C IOUT =2A; VCC> 8V Off State; VCC=13V; VIN=VOUT=0V Off State; VCC=13V; Tj =25C; VIN=VOUT=0V On State; VCC=13V VIN=VOUT=0V; VCC=36V; Tj=125C VIN=0V; VOUT=3.5V VIN=VOUT=0V; Vcc=13V; Tj =125C VIN=VOUT=0V; Vcc=13V; Tj =25C
IS (**)
Supply Current
IL(off1) IL(off2) IL(off3) IL(off4)
(**) Per device
Off State Output Current Off State Output Current Off State Output Current Off State Output Current
SWITCHING (VCC =13V)
Symbol td(on) td(off) dVOUT/ dt(on) dVOUT/ dt(off) Parameter Turn-on Delay Time Turn-off Delay Time Turn-on Voltage Slope Test Conditions RL=6.5 from VIN rising edge to VOUT=1.3V RL=6.5 from VIN falling edge to VOUT=11.7V RL=6.5 from VOUT=1.3V to VOUT=10.4V RL=6.5 from VOUT=11.7V to VOUT=1.3V Min Typ 30 30 See relative diagram See relative diagram Max Unit s s V/s
Turn-off Voltage Slope
V/s
LOGIC INPUT
Symbol VIL IIL VIH IIH VI(hyst) VICL Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Clamp Voltage Test Conditions VIN = 1.25V VIN = 3.25V IIN = 1mA IIN = -1mA 0.5 6 6.8 -0.7 Min 1 3.25 10 8 Typ Max 1.25 Unit V A V A V V V
3/18
1
VND830LSP
ELECTRICAL CHARACTERISTICS (continued) STATUS PIN
Symbol VSTAT ILSTAT CSTAT VSCL Parameter Test Conditions Status Low Output Voltage ISTAT= 1.6 mA Status Leakage Current Normal Operation; VSTAT= 5V Status Pin Input Normal Operation; VSTAT= 5V Capacitance ISTAT= 1mA Status Clamp Voltage ISTAT= - 1mA Min Typ Max 0.5 10 100 6 6.8 -0.7 8 Unit V A pF V V
PROTECTIONS
Symbol TTSD TR Thyst tSDL Ilim Vdemag Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status Delay in Overload Conditions Current limitation Turn-off Output Clamp Voltage Test Conditions Min 150 135 7 Typ 175 15 20 18 23 29 29 VCC-41 VCC-48 VCC-55 Max 200 Unit C C C s A A V
Tj>TTSD
VCC=13V 5.5V < VCC < 36V IOUT=2A; L= 6mH
OPENLOAD DETECTION
Symbol IOL tDOL(on) VOL TDOL(off) Parameter Openload ON State Detection Threshold Openload ON State Detection Delay Openload OFF State Voltage Detection Threshold Openload Detection Delay at Turn Off Test Conditions VIN=5V IOUT=0A VIN=0V 1.5 2.5 Min 0.6 Typ 0.9 Max 1.2 200 3.5 1000 Unit A s V s
OPEN LOAD STATUS TIMING (with external pull-up) IOUT< IOL VOUT > VOL VINn VINn
OVER TEMP STATUS TIMING Tj > TTSD
VSTATn
VSTATn tSDL tDOL(off) tDOL(on) tSDL
4/18
2
1
VND830LSP
Switching time Waveforms
VOUTn 90% 80%
dVOUT/dt(on)
dVOUT/dt(off)
10% t VINn
td(on)
td(off)
t
TRUTH TABLE
CONDITIONS Normal Operation Current Limitation Overtemperature Undervoltage Overvoltage Output Voltage > VOL Output Current < IOL INPUT L H L H H L H L H L H L H L H OUTPUT L H L X X L L L L L L H H L H STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H L H H L
5/18
1
VND830LSP
ELECTRICAL TRANSIENT REQUIREMENTS ON VCC PIN
ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E I -25 V +25 V -25 V +25 V -4 V +26.5 V II -50 V +50 V -50 V +50 V -5 V +46.5 V TEST LEVELS III -75 V +75 V -100 V +75 V -6 V +66.5 V TEST LEVELS RESULTS II III C C C C C C C C C C E E IV -100 V +100 V -150 V +100 V -7 V +86.5 V Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01 400 ms, 2
I C C C C C C
IV C C C C C E
CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.
6/18
VND830LSP
Figure 1: Waveforms
NORMAL OPERATION INPUTn OUTPUT VOLTAGEn STATUSn UNDERVOLTAGE VCC INPUTn OUTPUT VOLTAGEn STATUSn undefined VUSD VUSDhyst
OVERVOLTAGE VCCVOL VOL VCC>VOV
OPEN LOAD without external pull-up INPUTn OUTPUT VOLTAGEn STATUSn OVERTEMPERATURE Tj INPUTn OUTPUT CURRENTn STATUSn TTSD TR
7/18
1
VND830LSP
APPLICATION SCHEMATIC
+5V +5V +5V VCC Rprot STATUS1 Dld C Rprot INPUT1 OUTPUT1 Rprot STATUS2
Rprot
INPUT2
GND
OUTPUT2
RGND VGND
DGND
GND PROTECTION REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / IS(on)max. 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary
depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table.
8/18
1
1
VND830LSP
C I/Os PROTECTION:
If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and I latchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k.
OPEN LOAD DETECTION IN OFF STATE
Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to
supply the microprocessor. The external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RLOpen Load detection in off state
V batt.
VPU
VCC RPU INPUT DRIVER + LOGIC OUT + R STATUS VOL RL IL(off2)
GROUND
9/18
VND830LSP
Off State Output Current
IL(off1)
1.35 1.2 1.05 0.9 0.75 3 0.6 2.25 0.45 0.3 0.15 0 -50 -25 0 25 50 75 100 125 150 175 1.5 0.75 0 -50 -25 0 25 50 75 100 125 150 175
High Level Input Current
Iih (A)
6 5.25
Off State Vcc=13V Vin=Vout=0V
Vin=3.25V
4.5 3.75
Tc (C)
Tc (C)
Input Clamp Voltage
Vicl (V)
8 7.75
Status Leakage Current
Ilstat (A)
0.07
0.06
Iin=1mA
7.5 7.25 0.04 7 0.03 6.75 6.5 6.25 6 -50 -25 0 25 50 75 100 125 150 175 0.02 0.05
Vstat=5V
0.01
0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Status Low Output Voltage
Vstat (V)
0.8 0.7
Status Clamp Voltage
Vscl (V)
8 7.75
Istat=1.6mA
0.6 0.5 0.4 0.3 0.2 0.1 0 -50 -25 0 25 50 75 100 125 150 175 7.5 7.25 7 6.75 6.5 6.25 6 -50
Istat=1mA
-25
0
25
50
75
100
125
150
175
Tc (C)
Tc (C)
10/18
1
VND830LSP
On State Resistance Vs Tcase
Ron (mOhm)
100 90 80 70 60 50 40 30 40 20 10 0 -50 -25 0 25 50 75 100 125 150 175 20 0 0 5 10 15 20 25 30 35 40 100 80 60
On State Resistance Vs VCC
Ron (mOhm)
160 140
Iout=2A Vcc=13V
Iout=2A
120
Tc=150C
Tc=25C Tc= -40C
Tc (C)
Vcc (V)
Openload On State Detection Threshold
Iol (A)
2 1.75
Input High Level
Vih (V)
4 3.8
Vin=5V
1.5
3.6 3.4
1.25 1 0.75 0.5
3.2 3 2.8 2.6 2.4
0.25 0 -50 -25 0 25 50 75 100 125 150 175
2.2 2 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Input Low Level
Vil (V)
2.25 2.125 2 1.875
Input Hysteresis Voltage
Vihyst (V)
1.4 1.3 1.2 1.1 1
1.75 0.9 1.625 0.8 1.5 1.375 1.25 -50 -25 0 25 50 75 100 125 150 175 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
11/18
1
VND830LSP
Overvoltage Shutdown
Vov
50 47.5 45 3.5 42.5 40 37.5 35 1 32.5 30 -50 -25 0 25 50 75 100 125 150 175 0.5 0 -50 -25 0 25 50 75 100 125 150 175 3 2.5 2 1.5
Openload Off State Voltage Detection Threshold
Vol (V)
5 4.5
Vin=0V
4
Tc (C)
Tc (C)
Turn-on Voltage Slope
dVout/dt(on) (V/ms)
800 700 600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 150 175
Turn-off Voltage Slope
dVout/dt(off) (V/ms)
800 700
Vcc=13V Rl=6.5Ohm
600 500 400 300 200 100 0 -50
Vcc=13V Rl=6.5Ohm
-25
0
25
50
75
100
125
150
175
Tc (C)
Tc (C)
ILIM Vs Tcase
Ilim (A)
35 32.5
Vcc=13V
30 27.5 25 22.5 20 17.5 15 12.5 10 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
12/18
1
VND830LSP
Maximum turn off current versus load inductance
ILMAX (A) 100
10
A B C
1 0.01
0.1
1 L(mH )
10
100
A = Single Pulse at TJstart=150C B= Repetitive pulse at TJstart=100C C= Repetitive Pulse at TJstart=125C Conditions: VCC=13.5V Values are generated with RL=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization
t
13/18
1
VND830LSP
PowerSO-10TM THERMAL DATA
PowerSO-10TM PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: from minimum pad lay-out to 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
55
Tj-Tamb=50C
50 45 40 35 30
0 2 4 6 8 10
PCB Cu heatsink area (cm^2)
14/18
VND830LSP
PowerSO-10 Thermal Impedance Junction Ambient Single Pulse
ZTH (C/W) 1000
100
0.5 cm2 6 cm2
10
1
0.1 0.0001 0.001 0.01 0.1 1 Time (s) 10 100 1000
Thermal fitting model of a double channel HSD in PowerSO-10
Pulse calculation formula
Z TH = R TH + Z THtp ( 1 - )
where
= tp T
0.5 0.15 0.8 0.7 0.8 12 37 0.0006 2.10E-03 0.013 0.3 0.75 3 6
Thermal Parameter
Tj_1
Pd1 C1 C2 C1 C2 C3 C4 C5 C6
R1
R2
R3
R4
R5
R6
Tj_2
R1 Pd2
R2
T_amb
Area/island (cm2) R1 (C/W) R2 (C/W) R3( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C)
22
5
15/18
VND830LSP
PowerSO-10TM MECHANICAL DATA
DIM. A A (*) A1 B B (*) C C (*) D D1 E E2 E2 (*) E4 E4 (*) e F F (*) H H (*) h L L (*) (*)
(*) Muar only POA P013P
mm. MIN. 3.35 3.4 0.00 0.40 0.37 0.35 0.23 9.40 7.40 9.30 7.20 7.30 5.90 5.90 1.27 1.25 1.20 13.80 13.85 0.50 1.20 0.80 0 2 1.80 1.10 8 8 0.047 0.031 0 2 1.35 1.40 14.40 14.35 0.049 0.047 0.543 0.545 TYP MAX. 3.65 3.6 0.10 0.60 0.53 0.55 0.32 9.60 7.60 9.50 7.60 7.50 6.10 6.30 MIN. 0.132 0.134 0.000 0.016 0.014 0.013 0.009 0.370 0.291 0.366 0.283 0.287 0.232 0.232
inch TYP. MAX. 0.144 0.142 0.004 0.024 0.021 0.022 0.0126 0.378 0.300 0.374 300 0.295 0.240 0.248 0.050 0.053 0.055 0.567 0.565 0.002 0.070 0.043 8 8
B
0.10 A B
10
H
E
E2
E
E4
1
SEATING PLANE e
0.25
B
DETAIL "A"
A
C D = D1 = = = SEATING PLANE
h
A F A1
A1
L DETAIL "A"
P095A
16/18
1
VND830LSP
PowerSO-10TM SUGGESTED PAD LAYOUT
14.6 - 14.9
B
TUBE SHIPMENT (no suffix)
CASABLANCA MUAR
C
10.8- 11 6.30
A A
C
0.67 - 0.73 1 2 3 4 5 10 9 8 7 6 1.27 0.54 - 0.6
B
9.5
All dimensions are in mm. Base Q.ty Bulk Q.ty Tube length ( 0.5) Casablanca Muar 50 50 1000 1000 532 532 A B C ( 0.1) 0.8 0.8
10.4 16.4 4.9 17.2
TAPE AND REEL SHIPMENT (suffix "13TR")
REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max) 600 600 330 1.5 13 20.2 24.4 60 30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1) 24 4 24 1.5 1.5 11.5 6.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
17/18
1
VND830LSP
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics (c) 2003 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com
18/18
1


▲Up To Search▲   

 
Price & Availability of VND830LSP13TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X